Search results for "Matrix inequalities"
showing 10 items of 18 documents
Robust control of uncertain multi-inventory systems via linear matrix inequality
2008
We consider a continuous time linear multi inventory system with unknown demands bounded within ellipsoids and controls bounded within ellipsoids or polytopes. We address the problem of "-stabilizing the inventory since this implies some reduction of the inventory costs. The main results are certain conditions under which "-stabilizability is possible through a saturated linear state feedback control. All the results are based on a Linear Matrix Inequalities (LMIs) approach and on some recent techniques for the modeling and analysis of polytopic systems with saturations.
On the stability analysis for impulsive switching system with time-varying delay
2014
This paper focuses on the stability and stabilization problem for a neutral impulsive switching system with time-varying delay. Based on LMI method and optimization technologies, some stability criteria are derived for this kind of system. Some example and numerical simulation are given to demonstrate the effectiveness of our theoretical results. Refereed/Peer-reviewed
Static output-feedback controller design for vehicle suspensions: an effective two-step computational approach
2014
In this study, a novel two-step methodology is applied in designing static output-feedback controllers for a class of vehicle suspension systems. Following this approach, an effective synthesis of static output-feedback controllers can be carried out by solving two consecutive linear matrix inequality optimisation problems. To illustrate the main features of the proposed design strategy, two different static output-feedback H 8 controllers are designed for a quarter-car suspension system. The first of those controllers uses the suspension deflection and the sprung mass velocity as feedback information, whereas the second one only requires the sprung mass velocity to compute the control acti…
Recent Advances in Static Output-Feedback Controller Design with Applications to Vibration Control of Large Structures
2014
Published version of an article in the journal: Modeling, Identification and Control. Also available from the publisher at: http://dx.doi.org/10.4173/mic.2014.3.4 Open Access In this paper, we present a novel two-step strategy for static output-feedback controller design. In the first step, an optimal state-feedback controller is obtained by means of a linear matrix inequality (LMI) formulation. In the second step, a transformation of the LMI variables is used to derive a suitable LMI formulation for the static output-feedback controller. This design strategy can be applied to a wide range of practical problems, including vibration control of large structures, control of oshore wind turbine…
Robust delay-dependent H∞ control of uncertain time-delay systems with mixed neutral, discrete, and distributed time-delays and Markovian switching p…
2011
Author's version of an article published in the journal: IEEE Transactions on Circuits and Systems I: Regular Papers. Also available from the publisher at: http://dx.doi.org/10.1109/tcsi.2011.2106090 The problem of robust mode-dependent delayed state feedback H ∞ control is investigated for a class of uncertain time-delay systems with Markovian switching parameters and mixed discrete, neutral, and distributed delays. Based on the LyapunovKrasovskii functional theory, new required sufficient conditions are established in terms of delay-dependent linear matrix inequalities for the stochastic stability and stabilization of the considered system using some free matrices. The desired control is …
Robust H∞ sliding mode control with pole placement for a fluid power electrohydraulic actuator (EHA) system
2014
Published version of an article in the journal: International Journal of Advanced Manufacturing Technology. Also available from the publisher at: http://dx.doi.org/10.1007/s00170-014-5910-8 In this paper, we exploit the sliding mode control problem for a fluid power electrohydraulic actuator (EHA) system. To characterize the nonlinearity of the friction, the EHA system is modeled as a linear system with a system uncertainty. Practically, it is assumed that the system is also subject to the load disturbance and the external noise. An integral sliding mode controller is proposed to design. The advanced techniques such as the H ∞ control and the regional pole placement are employed to derive t…
A time-varying observer for linear systems with asynchronous discrete-time measurements
2017
International audience; In this paper we propose a time-varying observer for a linear continuous-time plant with asynchronous discrete-time measurements. The proposed observer is contextualized in the hybrid systems framework providing an elegant setting for the proposed solution. In particular some theoretical tools are provided, in terms of LMIs, certifying asymptotic stability of a certain compact set where the estimation error is zero. Moreover the case of asynchronous measurements is considered, i.e. when the measurements are not provided in well defined time instants, but they occur at an arbitrary time in a certain time interval. A design procedure based on the numerical solution of …
A robust fault detection design for uncertain Takagi-Sugeno models with unknown inputs and time-varying delays
2013
Abstract This paper investigates the problem of robust fault detection system design for a class of uncertain Takagi–Sugeno (T–S) models. The system under consideration is subject to unknown input and time-varying delay. The fault detection system is designed such that the unknown input is thoroughly decoupled from residual signals generated by the fault detection system. Furthermore, the residual signals show the maximum possible sensitivity to the faults and the minimum possible sensitivity to the external disturbances. The model matching approach is utilized to tackle the effects of parametric uncertainties in the model of the system. The design procedure is presented in terms of Linear …
Feasibility issues in static output-feedback controller design with application to structural vibration control
2014
Recent results in output-feedback controller design make possible an efficient computation of static output-feedback controllers by solving a single-step LMI optimization problem. This new design strategy is based on a simple transformation of variables, and it has been applied in the field of vibration control of large structures with positive results. There are, however, some feasibility problems that can compromise the effectiveness and applicability of the new approach. In this paper, we present some relevant properties of the variable transformations that allow devising an effective procedure to deal with these feasibility issues. The proposed procedure is applied in designing a static…
Comments on “Finite-Time $H_{\infty }$ Fuzzy Control of Nonlinear Jump Systems With Time Delays Via Dynamic Observer-Based State Feedback”
2014
This paper investigates a defect appearing in “Finite-time H∞ fuzzy control of nonlinear jump systems with time delays via dynamic observer-based state feedback,” which the observer-based finite-time H∞ controller via dynamic observer-based state feedback could not ensuring stochastic finite-time boundedness, and satisfying a prescribed level of H∞ disturbance attenuation for the resulting closed-loop error fuzzy Markov jump systems. The corrected results are presented, and the improved optimal algorithms and new simulation results are also provided in this paper.